
Abstract-To avoid using sensors with low biocompatibility and 
low durability in implantable TAH systems, the authors 
previously proposed a new method for estimating instantaneous 
values of flow rate and pressure head on the basis of voltage, 
current and rotational speed in a motor driven centrifugal 
pump.  The previous in vitro experiments showed that the 
proposed estimator could automatically compensate for the 
effect of the change in blood viscosity on the estimation 
accuracy by employing two kinds of auto-regressive exogenous 
model.  In this study, validity and reliability of this estimation 
method were ascertained in an acute animal experiment.  In the 
experiment, two centrifugal blood pumps were implanted into 
an adult goat as a total artificial heart.  Results of estimation 
were compared with true values when blood viscosity was 
changed by injecting physiological saline. The results indicated 
that the system could successfully estimate pressure head by 
compensating the change of viscosity although the estimation 
accuracy of the in vivo estimation was not so high as that of the 
previous in vitro tests.  
Keywords -  artificial heart, ARX model, pressure estimation, 
flow estimation, continuous-flow blood pump 

 
I. INTRODUCTION 

 
For automatic control of an implantable artificial heart, it 

is desirable to estimate blood flow and pressure without any 
sensors implanted inside the recipient's body.  In the case of 
an electric motor driven artificial heart, voltage, current and 
rotational speed of the motor can be measured easily and 
accurately.  These three signals are closely related to flow of 
the blood pump and pressure difference (pressure head) 
between inlet and outlet ports, and then, it is possible to 
estimate flow and pressure head by processing these signals. 

Such an approach has already succeeded to some extent 
in the case of centrifugal blood pumps in other studies [1-6].  
These estimation methods must include compensation 
procedure for the change in blood viscosity.  However, 
conventional compensation procedures are not suitable for 
automatic and on-line estimation.  For example, hematocrit 
value may be useful to compensate for the change in blood 
viscosity [4-6].  However, direct measurement of this value 
should be avoided because of necessity of another 
measurement apparatus outside the body. 

Previously, the authors proposed a new method for 
estimating instantaneous values of flow and pressure head on 
the basis of voltage, current and rotational speed in a DC-
motor driven centrifugal pump.  The proposed estimator can 
automatically compensate for the effect of the change in 
blood viscosity on the estimation accuracy by employing 

two kinds of auto-regressive exogenous model (ARX 
model)[7].   

In this study, validity and reliability of this estimation 
method were ascertained in an acute animal experiment.  In 
the experiment, two centrifugal blood pumps were implanted 
into an adult goat as a total artificial heart.  Results of 
estimation were compared with true values when viscosity of 
blood had been changed by injecting physiological saline. 

 

Supplied power 
VI 

Rotational speed 
N 

Flow: Q or Pressure head:  P 

ARX model II 
(On - 

identification)

K 

Estimated 

ARX model II 
(identified 

 every time) 

Gain  
constant   

ARX model I 

(identified before implantation) 

 
Fig. 1. Block diagram of the proposed estimation system. 

 
II. METHODS 

 
Estimation of Flow Rate and Pressure Head 

For general expression, let y(t) denote either pressure 
head P(t) [mmHg] or flow rate Q(t) [L/min].  Define 
electrical power VI(t) [W] supplied to the motor as the 
product of voltage and current.  In the steady state or the 
static situation where the notation of time “(t)” of every 
variable is omitted, the previous preliminary experiments 
showed that y can be approximated by 

 
y = b1N2VI + b2N VI + b3VI + b4N2+ b5N + b6  (1) 

 
where bj; j=1,2,…,6 are constant coefficients. 

To estimate the transient response of flow rate or 
pressure head, the static system (1) should be extended to the 
following ARX model (ARX model I) shown in the lower 
block in Fig.1 as a dynamic time series model. 
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where k: the discrete time satisfying t=k∆t, ∆t: the sampling 
period, w(k): the residue assumed to be a white noise, L: the 
order of the output, Mj: the order of the input, uj(k): the 
following six kinds of exogenous input corresponding to 
each term of the right hand side of (1) and the additional 
input K which will be explained later: 
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Let 176 == MM  and MMMM ==== 521 for simplicity. 

Before implantation of an artificial heart, we can collect 
the measured data y(k) and uj(k).  Thus, the coefficient 
parameters ai and bij included in (2) can be identified by off-
line least squares method on the basis of y(k) and uj(k).  
After the identification of ai and bij, the ARX model I 
without w(k) can generate an estimate )(ˆ ky  of y(k) on the 
basis of on-line measurement of uj(k). 

If blood viscosity considerably changes, the accuracy of 
the estimation of the ARX model I will decrease because the 
true coefficients ai and bij will also change.  Thus, as shown 
in the upper block in Fig.1, introduce a new ARX model 
(ARX model II) representing a system from power VI(k) to 
rotational speed N(k) as follows: 
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The system (10) yields the steady state gain K as follows: 
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This parameter K expresses rotational speed per unit time 
and includes information on the reciprocal of viscosity, and 
then, K can be used as the additional input u7(k) given by (9). 
Moreover, because VI(k) and N(k) can be obtained even after 
implantation, K can be calculated at any time. 

In general, the final prediction error (FPE) or the 
Akaike's information criterion (AIC) is frequently used to 
determine the orders (L and M) of ARX models.  In this case, 
however, it has already been ascertained that the 
determination based on such a criterion tends to yield 
extremely high orders.  A system model with too high orders 
is apt to produce large estimation error even if the true 
system slightly changes from the original identified situation.  
Thus, the number L and M can be chosen under 20 so as to 
minimize the root mean square value e of the error between 

)(ky  and its estimate )(ˆ ky  defined as 

∑
=

−=
DK

kD

kyky
K

e
1

2)}(ˆ)({1       (12) 

 
where KD is the size of data. 
 
Acute Animal Experiment 

In order to evaluate the estimation system, an acute 
animal experiment was executed using an adult goat.  Two 
centrifugal pumps (Terumo Co. Ltd; CAPIOX) for right and 
left hearts were installed as the biventricular bypass.  Right 
and left inflow cannulae were inserted into the left and right 
atriums, respectively.  Left and right outflow cannulae were 
sutured on the descending aorta and the pulmonary artery, 
respectively.  Aortic pressure (AoP) and pulmonary arterial 
pressure (PAP) were measured using pressure transducers at 
the outlet port of the left and right pumps, respectively.  Left 
and right atrial pressures (LAP, RAP) were measured at the 
intake ports of the left and right pumps, respectively.  Left 
and right pump flow rate (QL, QR) were measured with 
electromagnetic flowmeters.  Rotational speed of each motor 
was stored in a personal computer through the serial 
communication port with each pump driver.  All the 
measurements were stored at 5Hz in a personal computer. 

The driving voltage of the left pump was changed 
manually according to a step-like signal in order to maintain 
the condition of the persistent excitation [8] for accurate 
identification.  The right pump was controlled automatically 
so that LAP may approach RAP to keep the perfusion 
balance between systemic and pulmonary circulation.  Blood 
viscosity was changed at several times by intravenous 
infusion of physiological saline. 

In this study, PL=AoP–RAP and QL were estimated off-
line by using a self-produced software based on MATLAB 
(Mathworks Inc.)  
 

III. RESULTS 
 

To evaluate the effect of the compensation procedure for 
change in blood viscosity of the proposed method, this 
method was compared with another method without 
compensation ability. The compared method has only the 
ARX model I given by (2) without the additional input 
u7(k)=K . 

First, measured P(k), Q(k), VI(k) and N(k) were stored 
every ∆t = 200ms for 600s. The data were divided into four 
segments by tree beginning points of infusion. The ARX 
model II was identified by the off-line least square method in 
each segment, and then K was calculated in the four 
segments.  Both ARX models I with and without K were also 
identified by the off-line least squares method. In the 
estimation of flow rate and pressure head, the same input 
data as used in the identification was supplied to the models 

Fig. 2 shows the result of estimation of the pressure head 
PL of the left pump obtained from the ARX model I without 
K. Each vertical line shows the time when physiological 
saline was injected.  In this figure and also the other figures 
which will be shown later, it can be seen that the proposed 



system could not estimate relatively high frequency 
component (near the frequency of heart beat) included in the 
true value.  An underestimation can be observed after the 
first infusion.  The estimation error e defined by (12) and 
correlation coefficient between )(ky  and )(ˆ ky  were 
7.44mmHg and 0.724, respectively. 

Fig. 3 also shows the result of estimation of PL obtained 
from the combination of the ARX model I with u7(k)=K 
given by (2) and the ARX model II given by (10).    It can be 
observed that the error of estimation was slightly reduced 
from that shown in Fig.2.  This may be because the effect of 
the change in blood viscosity was compensated by K.  The 
mean value of estimation error and correlation coefficient 
were 6.77 mmHg and 0.775, respectively. 

Fig. 4 and 5 show the results of estimation of flow rate 
QL based on the ARX model I without K and the ARX 
models I and II including K, respectively.  It is shown that 
both estimates were almost the same as each other.  In both 
figures, the estimation error and correlation coefficient were 

0.27L/min and 0.875, respectively.  This means that the 
effect of introduction of K on improvement in estimation 
accuracy was hardly observed in the case of estimation of 
flow rate although K was actually different in each interval. 

The above four results of estimation are put together in 
Table I. 
 
 

TABLE I 
ESTIMATION ERROR AND CORRELATION COEFFICIENT 

    Estimation 
error e 

Correlation  
 coefficient 

 

Estimation of Without K 7.39 mmHg 0.724   

pressure head With K 6.77 mmHg 0.775  
 Estimation of Without K 0.27 L/min 0.875  
 flow rate With K 0.27 L/min 0.875  
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Fig. 4. Estimation of flow rate based on  (2) without K. 
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Fig. 2. Estimation of pressure head based on  (2) without K. 
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Fig. 5. Estimation of flow rate based on (2) with K. 
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Fig. 3. Estimation of pressure head based on (2) with K. 
 



 
 

IV. DISCUSSION 
 

In the case of estimation of pressure head, the effect of 
the additional input, i.e., the gain constant K on depression 
of estimation error could be verified.  However, this effect 
was not so large than we had expected on the basis of the 
previous in vitro results [7] obtained from a mock 
circulatory system. This may be because the change in blood 
viscosity caused by infusion of physiological saline was not 
so sufficient as that can be realized in the mock circulatory 
system. 

On the other hand, in the case of flow rate, the 
improvement in the estimation accuracy could not be 
observed by the introduction of K. This may be because the 
magnitude of flow rate was too small to cause on acute 
identification. 

As shown Table I, the estimation accuracy in the animal 
experiment was not high in comparison with the result in 
vitro [7]. This may be because the beating components of the 
natural heart were included in the data of PL and QL.  

One of the most important problems in this estimation 
method is when and how the coefficient parameters of the 
ARX model I should be estimated because the ARX model I 
cannot, of course, be identified when the true values of P(t) 
and Q(t) cannot be measured. It is desirable that the 
parameters can be identified using the data obtained from in 
vitro experiments. In this case, however, it is considerably 
sure that the identified values of the parameters will become 
different from the true values in an actual in vivo situation 
after implantation of the TAH. Therefore, the identification 
should be carried out while the operation of the TAH 
implantation by using flow and pressure sensors equipped 
temporally. In this case, however, it is necessary to change 
the gain constant K or blood viscosity for accurate 
identification in spite of difficulty. 

Kitamura et al. [9] also proposed the estimation method 
of pressure head and flow rate using motor current and 
rotation speed. This method can compensate the effect of 
blood viscosity because the viscosity is also estimated in an 
online and real-time fashion by using motor current and 
rotation speed. However, this method has not yet obtained 
enough accuracy and robustness in animal experiments 
 
 

V. CONCLUSION 
 

In this study, in order to ascertain the adequacy of the 
estimation method proposed in the authors' previous study, 
an acute animal experiment was carried out using an adult 
goat equipped with a TAH consisting of two centrifugal 
pumps. The results showed that the ARX model with an 
additional input, i.e., the gain constant of the system from 
electrical power to rotational speed of the motor could 
compensate for the change in blood viscosity.  However, the 
estimation accuracy of the in vivo estimation was not so high 
as that of the previous in vitro tests. 

In further studies, it is necessary for clinical use to 
investigate the effect of changes in environmental situations 

except viscosity and individual differences on the model 
parameters.  To improve the estimation accuracy, it can be 
also considered that artificial neural networks [10] should be 
introduced to the estimator to compensate the nonlinear part 
of the residue which cannot be expressed by linear models 
such as ARX models. 
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